Водород как топливо для автомобиля?

Водородное топливо – альтернатива или тупиковое направление?

Экологи и ученые уже давно бьются над решением проблемы создания максимально экологичного и чистого вида топлива. Причем оно должно быть не только дешевым, но и неисчерпаемым, поскольку призвано заменить привычные для нас энергоресурсы. Его цена не должна превышать стоимости угля, нефти и природного газа. Задача кажется невыполнимой, однако все чаще взоры энергетиков обращаются на водород как вид топлива, способный удовлетворить имеющимся требованиям и стать широкоиспользуемым ресурсом.

Ко всему прочему ситуация в мире становится нестабильна и каждое государство хочет снизить зависимость от того или иного топлива, добыча которого производится на территории других стран. Все чаще водород рассматривается как возможность использования его в качестве альтернативного варианта. У него есть определенные плюсы, но есть и минусы. Попробуем разобраться в аспектах использования водорода, как топлива, его преимуществах и недостатках. А также постараемся ответить на вопрос: быть ли ему полноценной заменой существующих видов топлива.

Сам по себе водород является побочным продуктом энергетического процесса и по идее должен уничтожаться, поскольку его скопление очень опасно. Но энергетики решили найти ему практическое применение.

Водород в качестве альтернативного топлива

Транспортные средства достаточно активно используют природные источники энергии, потребляя около трети всей нефти, добываемой в мире, и из всех видов транспорта автомобили являются наиболее энергоемкими. Использование углеводородного топлива на нефтяной основе сопровождается выбросом в атмосферу большого количества вредных веществ. Это приводит к глобальному загрязнению окружающей среды. В качестве альтернативы предлагается начать активно использовать гидроген и на его основе устанавливать в машины топливные элементы. Давайте сначала поймем, почему выбор пал на этот изотоп.

Водород (H2) — один из немногих газов, широко распространенный на планете, обладающий высокой теплотвотворной способностью. Это абсолютно бесцветный газ, без вкуса и без запаха, из-за чего экологи ратуют за его применение в качестве топлива. Можно отметить, что он очень перспективный энергоноситель. Промышленный процесс его получения таков, что когда вещество соединяется с кислородом, образуется вода и выделяется определенное количество тепла. Это сгорание не вызывает вредных выбросов в окружающую среду, в частности двуокиси углерода. При горении с доступом кислорода снова образуется вода, которую можно использовать повторно. Это делает источник энергии самообновляемым, а отсутствие вредных веществ – экологически чистым и безвредным для окружающей среды.

Идея создания углеводородного электродвигателя пришла с запада, а точнее из Америки. Интерес к газу как альтернативному питанию для транспорта обусловлен, прежде всего:

  • возможностью использования топливных элементов в FCEV (fuel cell vehicle) в электромобилях топливного типа без выбросов;
  • быстрой заправкой автомашин, занимающей от 3 до 5 минут;
  • эффективностью ТЭ с точки зрения расхода и стоимости;
  • возможностью получения его из углеводородов, биомассы и мусора;
  • потенциалом для отечественного производства.

Принцип действия ТЭ основан на прокачивании кислорода и водорода через катоды и аноды, контактирующими с платиновым катализатором. В результате происходит химическая реакция, в которой образуется вода и электрический ток. Топливный элемент, подсоединенный к электродвигателю, в два-три раза быстрее и экономичнее, чем бензиновый мотор внутреннего сгорания.

Следует отметить, что большинство развитых стран охотно переходят на водородный изотоп и начали строить АЗС на его основе. Заправки появились в Японии, США и Германии. Также крупные автомобильные концерны готовы предложить новые разработки автомобилей с водородными ТЭ. Немалый интерес к этому типу горючего проявляют авиаконструкторы и уже фирмой “Боинг” был разработан самолет “Джамбо Джет” на основе водорода. А перекись водорода, являющаяся соединением водорода, применяется в электромоторах ракет и подводных лодок. Более подробную информацию о топливе можно прочитать в статье “Почему биотопливо считается перспективным направлением?”

Плюсы и минусы

У вида горючего есть сторонники, которые уверены, что за водородом будущее. Но есть и скептики, которые находят больше минусов, чем плюсов. Взвесим все “за” и “против”.

Плюсы водородного топлива.

  • Наверное, самым главным плюсом является его экологичность. При эксплуатации других марок топлива образуются вредные выхлопы, загрязняющие воздух. У углеводорода с ними проблем нет. Все, что остается после внутреннего сгорания – это водяной пар. Безусловно, при расходовании сгорают разные масла, но их токсичный выброс в разы меньше по сравнению с бензиновым.
  • Простота конструкции и ее использование. Для мотора не требуется сложных систем подачи горючего, которые пока есть в современных авто и которые не отличаются надежностью, а порой бывают даже опасны. У электродвигателей с искровым зажиганием, которые работают на водородном изотопе, имеется возможность качественно регулировать топливоздушную смесь. Этот газ также способен сделать маленькие двигатели достаточно мощными, а авто высокоскоростными.
  • Водородное топливо делает движение автомобиля полностью бесшумным.
  • Нельзя не игнорировать тот факт, что КПД электродвигателя, работающего на углеводороде, намного выше, чем у бензинового двигателя внутреннего сгорания.
  • И еще одно “за”. Этот элемент самый распространенный во Вселенной занимающий более 86% атомов, и в отличие от запасов нефти, он никогда не закончится и на нем не придется экономить.

Что же говорят скептики, отрицая возможность его применения?

  • На сегодняшний день способ получения в промышленных объемах достаточно дорогой и сложный. Сам по себе в чистом виде изотоп не существует, он летуч и для его добычи необходимы определенные технологии, которые требуют денежных вложений и определенных затрат.
  • Сложности при хранении и транспортировке газа. До сих пор не разработаны стандарты хранения и перевозки, так как никаких значимых экспериментов не проводилось. Это вновь потребует денежных инвестиций.
  • Несмотря на более простую систему углеводородного двигателя относительного бензинового, она пока не совершенна. Под ее установку требуются автомобили больших габаритов, что делает выпуск транспортных средств более дорогим. Безусловно, эту проблему можно решить, если проводить дополнительные разработки и эксперименты, но пока ими мало кто занимается.
  • Сложности перевода производства на добычу и переработку гидрогена. Дело в том, что для его добычи требуются совершенно другие машины и механизмы, отличные от тех, которые используются для добычи нефти. Не все предприятия готовы потратить деньги на модернизацию своего производства и переход на новейшие стандарты. К тому же из-за малоизученности элемента промышленные гиганты не готовы рисковать, не зная, как отреагируют потребители.
  • Недоверие покупателей. Еще один фактор, сдерживающий полное внедрение газа. Пока еще общество скептически относится к новшеству, предпочитая проверенные средства заправки. Из-за этого в мире небольшой процент АЗС, полностью готовых обеспечивать этим видом горючего.

Как видим, пока обоснованных минусов больше. Отсутствие стандартов добычи, переработки, хранения водородного изотопа, а также приемлемых конструкторских решений ведет к недоверию общества, которое пока не готово пересаживаться на новые водородные авто, а промышленность не видит целесообразности проводить реконструкцию производства из-за низкого спроса.

Как работает топливный элемент?

В статье уже упоминалось о топливном элементе, который планируется устанавливать в автомобилях нового типа. Давайте подробнее познакомимся с его принципом действия.

Топливный элемент – электрохимическое устройство, которое преобразует энергию, хранящуюся в химической формуле, в электроэнергию, воду и тепло. Он состоит из двух электродов: анода и катода. Для их изготовления используют угольные пластины, покрытые платиной. На аноде подающийся гидроген распадается, при потере электрона. В это время кислород на катоде соединяется с пришедшим патроном. По большому счету топливный элемент можно сравнить с батареей, у которой вырабатывается постоянный ток в результате химической реакции. Разница между ТЭ и батареей заключается в том, что он не накапливает электричество, не разряжается и его не нужно повторно заряжать. Он будет работать до тех пор, пока имеется запас топлива и воздуха. Отличительной особенностью еще можно назвать то, что элементы не сжигают топливо, как другие электрогнераторы.

Еще к плюсам углеводородных двигателей можно отнести их способность работать при низких температурах, что сокращает время запуска. Это происходит благодаря графитовым ячейкам, которые дают возможность проходить реагентам с сохранением электрического контакта с электролитом. Благодаря этому в холода не придется прогревать двигатель.

Правда у таких элементов имеется одна особенность. Низкая плотность изотопа несет с собой трудности проектирования системы для его хранения в машине. Для хранения придется использовать бак, превышающий обычный в 800 раз. Но сегодня разработаны основные решения для его хранения:

  • в сжатом виде, когда он находится в баллонах;
  • на криогенных станциях, где газ хранится при низкой температуре;
  • в виде сплавов (металл и гидрид), поглощающих водород.

Пока заправка авто с водородным двигателем весьма дорогой процесс, требующий гибкой связи между заправщиком и автомобилем, который обеспечивает запечатанную систему.

Массовые авто на водороде: быть или не быть?

Однозначно ответить на этот вопрос пока нельзя. Конечно, попытки создать или получить усовершенствованное экологически чистое и дешевое горючее не будут остановлены. Возможно, разработки будут вестись в совершенно другом направлении и гидроген не станет единственным альтернативным вариантом. Пока же некоторые дилерские центры готовы предложить автомобили на водородном изотопе. Так, уже есть марки Toyota, Honda, Mercedes-Benz, Hyundai, но их стоимость достаточно высока. Проходят испытания Ford, Nissan, Daimler и Volkswagen. Большой энтузиазм по внедрению проявляют азиатские страны, в частности Япония, Китай и Южная Корея. В этих странах наибольшие показатели ВЗС (водородно заправочных станций). Правительства этих стран проводят активную политику по внедрению легковых автомобилей и общественного транспорта на водородных частицах, а также расширяют сети для промышленного производства горючего.

Читайте также  Что такое свап в автомобиле?

Европейские страны, хотя и не в отстающих, но все же не спешат переводить автопром на водород. Связано это с минусами, которые были рассмотрены выше. К тому же государствам придется серьезно раскошелиться, чтобы содержать водородные станции. Водородным заправочным станциям непросто заменить разветвленную сеть обычных АЗС и по сегодняшним подсчетам она может обойтись более полутора триллионов долларов США. Еще одним сложным аспектом является получение самого изотопа. Сегодня используют:

  • паровую конверсию метана и природного газа;
  • электролиз воды и газификацию угля;
  • пиролиз и частичное окисление;
  • биотехнологии.

В качестве последних серьезно рассматривают возможность получать газ из солнечной энергии, энергии ветра, из биомассы (с помощью бактерий) и отходов (путем их сжигания). Пока все методы имеют свои несовершенства, над которыми ученым и энергетикам еще предстоит поработать.

Подводя итоги, надо сказать, что успех внедрения углеводородного топлива и его использования во многом будет зависеть от сотрудничества стран и государств в этой области. Пока что уровень не очень высок. Не проводятся массовые испытания, не разрабатываются необходимые стандарты и не проводятся информационно-рекламные мероприятия призванные повысить интерес населения к новому горючему. Процесс перехода будет осуществляться постепенно и возможно займет не одно десятилетие. Однако в перспективе водород как вид топлива может быть очень востребован и для этого имеются все предпосылки.

Водород как топливо для автомобиля?

Водород практически не встречается в природе в чистой форме, поэтому первая проблема, которая стоит перед одним из видов топлива будущего — получение.

Вопреки распространенному стереотипу электролиз (химический процесс, возникающий при прохождении электрического тока через раствор или расплав электролита и приводящий к выделению на электродах его составляющих веществ) не единственный метод производства водорода, хотя именно его предлагают применять в бытовых электролитерах.

Об использовании водорода на службе автомобиля и начальную информацию о методах получения водорода читайте далее.

Как получают водород для использования в качестве топлива для автомобиля

Водород можно получать паровой конверсией — выделением чистой его формы из летучих углеводородов, чаще всего для этого используют метан, данный способ является наиболее дешевым.

Газификация угля также дает свои «водородные плоды» за счет преобразования твердого и жидкого топлива в горючие газы.

За производство водорода посредством термического разложения воды (пиролиза) ратуют британцы, мотивируя это тем, что сырьем в подобном случае может являться обычный мусор.

Еще одними из способов добывания водорода являются частичное окисление и группа биотехнологических методов.

Последние используют явление выделения водорода микроорганизмами (например, некоторыми водорослями при недостатке кислорода и серы), либо разложение воды с участием все тех же микроорганизмов. Благодаря использованию катализаторов эффективность последнего метода можно увеличить на треть.

Как хранят добытый для использования в автомобилях водород

Следующий задачей для водородной энергетики является процесс хранения водорода, оно возможно в трех формах: в виде сжатого газа, в сжиженном или адсорбированном состоянии, когда газ удерживается в поглотившем его веществе.

Так или иначе в каждом из этих случаев приходится решать определенную проблему: сжатый газ, несмотря на свою плотность, все-таки занимает немало места, жидкий — требует низких температур, а в случае третьей формы — это поиск подходящего материала для удержания летучего топлива, обладающего высокими поглощающими свойствами и подходящими условиями аккумуляции газа (в основе своей это углеродные наноструктуры с различными вариациями).

Заправка автомобиля водородным топливом

Следующий этап в транспортировке водорода к конечному пользователю — заправка. Различают мобильные, стационарные и домашние заправочные системы. В основном в них используется газообразный водород, хотя есть и станции, работающие с жидким топливом. В данном случае все зависит от автомобиля. Например, BMW Hydrogen 7 потребляет наряду с бензином жидкий водород, а вот его конкурент от General Motors — Opel Zafira Hydrogen 3 использует 2 бака под сжатый и сжиженный газы.

Проблемы продвижения водорода как топлива

Вообще заправочная инфраструктура — один из камней преткновения для водородной отрасли: чтобы автомобили на водороде стали популярны, для них нужна обслуживающая система, а чтобы создать эту систему, необходимо достаточное количество ее пользователей.

Что в конечном итоге сдвинет с мертвой точки решение этой проблемы — покажет время, но как и всегда вся надежда возлагается на науку, хотя здесь уже возникнет другая дилемма: наука нуждается в финансировании, а инвесторам в свою очередь нужна гарантия результативности и востребованности открытий.

Преимущества и плюсы водорода как топлива для продавцов

Из привлекательных факторов водородной инфраструктуры можно выделить время заправки автомобиля — оно составляет обыкновенно 3-5 минут (1 кг топлива по данным американских ученых необходим для 96 км пробега).

Также определенно стоит подчеркнуть, что на первых порах малые и средние заправки могли бы совмещать в себе функции производства, хранения и передачи топлива потребителю, тем самым исключив расходы на транспортировку. Однако чем больше водородных автомобилей будет появляться, тем большие размеры заправочных станций будут востребованы.

Особенности потребления водородного топлива

Наконец, пришло время поговорить об особенностях потребления водородного топлива.

Во-первых, на радость борцам за экологию снижается выброс углекислого газа и вредных продуктов сгорания в атмосферу, здесь необходимо сделать ремарку о том, что данное положительное явление может нивелироваться, если для производства самого водорода будут использоваться грязные источники энергии, так что как ни крути, а водородное дитя требует более нежного обращения, если люди хотят, чтобы из него кое-что получилось в будущем.

Во-вторых, с использованием водорода экономики стран могут стать менее зависимыми от роста цен на энергоносители.

В-третьих, КПД водородного двигателя составляет 45%, что больше, чем у его дизельного аналога. Хотя мощность первого меньше, чем у второго на 20-30%, кроме того, водород может существенно увеличить износ деталей двигателя за счет вступления в реакции с материалами, из которых они изготовлены.

Безопасность водорода как топлива для автомобиля

Далее, не следует пренебрегать вопросом безопасности — водород летуч и легко воспламеняем: закрытое пространство автомобиля может заполниться опасным газом, а уже одно то, что смесь водорода и воздуха является взрывоопасной, способно напрочь оттолкнуть от его использования. Однако не следует слишком критично относиться к этим замечаниям, все знают, насколько опасны АЭС при возникновении проблем в их эксплуатации, и тем не менее они считаются самыми чистыми производителями электроэнергии.

Кроме того, не обязательно вообще кардинально менять автомобиль и вид топлива, сегодня уже есть возможность использовать гибридный транспорт, в котором, например, используется смесь водорода и дизельного топлива, что с одной стороны сокращает его расход, а с другой — уменьшает количество вредных выбросов в атмосферу.

Также никто не запрещает использовать водород в других транспортных системах, скажем, железнодорожной и морской: здесь не так важна компактность топливных емкостей, а в случае применения водорода в качестве топлива, например, для подводных лодок, они приобретают существенный козырь — практически полное отсутствие шумов.

Вывод о водороде как о топливе для автомобиля

Водородной отрасли нужно дать время развиться, хотя сегодня оно как никогда напоминает ускользающий через пальцы песок, потому как уже появляются автомобили на гибридных электро-дизельных или электро-азотных двигателях, а также работающие на сжатом воздухе. Конкуренция на рынке энергоносителей крайне высока и вряд ли уменьшится в ближайшее время.

Как работает водородный двигатель и какие у него перспективы

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

Читайте также  Как управлять механикой на автомобиле?

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Читайте также  Как правильно отполировать фары автомобиля своими руками?

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Водород как топливо для автомобилей

Получение водорода

Сейчас известно около десятка методов получения водорода из разных исходных материалов. Самый известный — гидролиз воды, ее разложение при пропускании электрического тока, но он требует больших затрат энергии. Главным направлением снижения энергозатрат при электролизе воды является поиск новых материалов для электродов и электролитов.

Разрабатываются методы получения водорода из воды с использованием неорганических восстановителей — электроотрицательных металлов и их сплавов с добавкой металлов-активаторов. Такие сплавы названы энергоаккумулирующими веществами (ЭАВ). Они позволяют получать из воды любое количество водорода. Еще одним способом выделения водорода из воды может стать ее фотоэлектрохимическое разложение под действием солнечного света.

Получение водорода парофазной переработкой метана

К распространенным методам относятся парофазная переработка метана (природного газа) и термический метод разложения угля и другого биоматериала. Перспективны термохимические циклы производства водорода, парофазные методы конверсии его из каменного и бурого угля и торфа, а также метод подземной газификации угля с получением водорода.

Отдельная тема — разработка катализаторов для получения водорода из органического сырья — продукта переработки биомассы. Но при этом наряду с водородом образуются значительные количества окиси углерода (СО), который необходимо утилизировать.

Получение водорода из биогаза

Еще один перспективный метод — процесс каталитической паровой переработки этанола. Можно также получить водород из угля (как каменного, так и бурого) и даже из торфа. Также все большее внимание привлекает сероводород. Это обусловлено низкими затратами энергии на электролитическое выделение водорода из сероводорода и большими запасами этого соединения в природе — в воде морей и океанов, в природном газе. Сероводород также получается в качестве побочного продукта нефтеперерабатывающей, химической, металлургической промышленности.

Водород можно получать с использованием плазменных технологий. С их помощью можно газифицировать даже самое низкокачественное углеродное сырье, например твердые бытовые отходы. В качестве источника термической плазмы используются плазмотроны — устройства, генерирующие плазменную струю.

Хранение водорода

Для хранения водорода непосредственно в автомобиле существуют следующие способы: газобаллонный, криогенный, металлогидридный.

В первом случае водород хранится в сжатом виде при давлении около 700 атм. При этом масса водорода составляет всего около 3% от массы баллона и для хранения сколько-нибудь заметного количества газа нужны весьма тяжёлые и объёмные баллоны. Это не говоря уже о том, что изготовление, зарядка и эксплуатация таких баллонов требуют особых мер предосторожности из-за опасности взрыва.

Криогенный способ подразумевает сжижение водорода и хранение его в теплоизолированных сосудах при температуре -235 градусов. Это достаточно энергозатратный процесс – сжижение обходится в 30-40% той энергии, которая получится при использовании полученного водорода. Но, как-бы ни была совершенна теплоизоляция, водород в баке нагревается, давление увеличивается и газ стравливается в атмосферу через предохранительный клапан. Всего несколько дней – и баки пусты!

Самыми перспективными являются твердые накопители, так называемые металлогидриды. Эти соединения умеют вбирать в себя, как губка, водород при одних условиях и отдавать при других, например при нагревании. Чтобы это было экономически выгодно, такой металлогидрид должен «впитывать» не менее 6% водорода. Весь мир сейчас ищет подобные материалы. Как только материал будет найден — его подхватят технологи, и процесс «водородизации» пойдет.

Водородное топливо

  • Преимущества водородного топлива
  • Автомобили на водородном топливе
  • Водородное топливо в России
  • Водородная Россия
  • Производство водородного топлива

Преимущества водородного топлива

В отличие от угля, бензина, мазута, природного газа и другого привычного нам топлива, водород при сгорании не образует токсичных выбросов — он совершенно экологически безопасен и не несет за собой никакого углеродного следа. Однако есть и минусы: это стоимость его производства и взрывоопасность. Из-за взрывоопасности водородное топливо пока не получило широкого распространения в повседневной жизни. Основная ставка делается все-таки на электротранспорт.

Автомобили на водородном топливе

На самом деле, история водородного топлива не нова. Первый двигатель, работающий на водороде, был создан еще в начале 19 века. В блокадном Ленинграде, когда бензин был непозволительной роскошью, военные техники использовали воздушно-водородную смесь в качестве топлива для работы аэростатов. Кроме того, в городе передвигалось около 600 автомобилей на водородном топливе.

Сегодня причина для использования водорода вместо бензина другая, но не менее важная: автомобили — одни из главных загрязнителей атмосферы. На разные виды транспорта приходится 25% всех выбросов углекислого газа в атмосферу. Известно, что автомобили с силовыми установками на водородном топливе уже производят Honda, Hyundai и Toyota, а такие автомобильные гиганты, как Audi, BMW, Ford и Nissan ведут собственные разработки водородных двигателей.

Водородное топливо в России

Не остаются в стороне и российские разработчики: вполне возможно, что наши автозаправки смогут в прямом смысле делать топливо из воздуха. В 2020 году специалисты уже разработали и даже подключили первый отечественный электролизный генератор газа, способный производить практически стопроцентно чистый водород. Такая заправка получает полную автономность, ведь топливо она получит из самого распространенного ресурса — воды. Получается, что в ближайшем будущем наши машины смогут заправляться водородным топливом.

Водородная Россия

Пока же на постоянной основе в России эксплуатируется единственный автомобиль на водороде – Toyota Mirai. Однако правительство России уже начало разрабатывать программу развития водородной энергетики. Это поможет радикально снизить выбросы углекислого газа. Перспектива вырисовывается следующая: к 2050 году, чтобы понизить температуру воздуха на 2 градуса, потребуется перевести на водородное топливо четыреста миллионов частных легковых машин, и это не считая общественного и грузового транспорта.

Программа «Водородная Россия – 2050» подразумевает несколько этапов реализации этого плана. Один из самых захватывающих — создание водородной трассы «Москва – Казань» со всей необходимой инфраструктурой, и, конечно же, широкое внедрение водородных автомобилей в стране.

Производство водородного топлива

Это довольно сложный, дорогой и трудоемкий процесс, из-за чего технология пока не получила широкого применения. Нет и понимания, как хранить и транспортировать водородное топливо. Решение этих вопросов потребует большого количества финансов и времени.

Для добычи водорода в промышленных масштабах нужно отстраивать огромные производственные комплексы, и не у каждого региона и даже страны есть такая возможность. Лидерами в этом вопросе считаются азиатские страны: Китай, Корея и Япония.

Китай планировал уже к 2025 году превратить печально известный город Ухань в водородную столицу страны, но пандемия отодвинула эти планы. В Корее специалисты проектируют водородные заправки таким образом, чтобы водитель мог без труда пересечь на водородном авто всю страну. Япония очень активно занимается продвижением автомобилей на водородном топливе. Страна ставит перед собой задачу радикально улучшить качество воздуха, сократив промышленные и транспортные выбросы, а заодно уменьшить зависимость от импортируемой нефти и газа. Кстати, именно Япония выпустила первый водородомобиль Toyota Mirai.

Так или иначе, автомобили на водородном топливе — это наше обозримое будущее. И, похоже, что огромный скачок развития такого транспорта происходит прямо сейчас. По прогнозам аналитиков, уже к 2025 году стоимость машин на водородном топливе сравняется со стоимостью обычных авто. А значит, нам будет проще сделать правильный и осознанный выбор, который поможет планете.